The Masked Analyst Reveals Benchmark’s Biggest
Tricks and Cheats

By - I -, Benchmark Trainer and Mentor

In a television show shown in the UK, Canada, Australia, and the US in 1997-1999, a Brazilian born
magician, Val Valentino, donned a mask and starred in a show where he broke the Magician’s Code not
to reveal the secrets of their tricks. Several lawsuits followed as some magicians had spent 10s of
thousands of dollars on the equipment for their tricks and others
had developed tricks that they had licensed to other magicians.

In this era of Covid ... and wearing a mask, | have chosen to break the
benchmark analyst’s unwritten code of silence to reveal the secrets
that DBMS vendors use to win business.

Val believed disclosing the secrets behind tricks would encourage
others to become magicians and shake up the magical arts as
magicians had become complacent. | doubt that revealing benchmark secrets will encourage anyone to
become benchmark analysts unless they are predisposed to the insanity of building a data warehouse in
a few weeks with incomplete table definitions, malformed source data, queries that never worked and a
deadline that never changes but a start date that is repeatedly delayed. It is my hope that revealing
these secrets will shake up benchmark practices and result in more realistic benchmarks that help
companies choose the best technology to meet their production needs.

Trick #1: Results Caching

Some DBMSs can save the final spool file of results along with information about the query that created
it (like the hash value of the source code). If a matching query is executed, the DBMS merely returns the
result set from the prior execution.

In a benchmark run by a BI tool vendor, they allowed Results Cache
results caching to stay on. They argued, in normal
production usage there would be a repeat of the i

execution of some common queries. The problem is, in \
a benchmark there is not the robust variety of queries

. . . } Query
found in production. In their 106-query test, t.hey rana Client PENENRG D5MS &
“warm-up” test before the measured test which had the

. Results Real Tables

effect of populating the results cache. We created a
RedShift DBMS and re-ran their tests with and without results caching. The result:

e Without results cache: 106 queries took 125.33 seconds and used 1,692 seconds of CPU
e With results cache: 106 queries took 7.74 seconds and used 179 seconds of CPU. Only 2 queries
were re-executed because they produced larger result sets

© 2021 Teradata Page 1 of 6 teradata

Benchmark’s Biggest Tricks and Cheats

All DBMSs we are aware of that use results caching have statements to turn it off. Attempts to defeat
results caching by parameterizing queries may have inconsistent success based on the amount of storage
available for results caching and the logic DBMSs use for retaining results. We’ve seen sets of results
retained for as long as 24 hours. They may even be retained across DBMS restarts.

Trick #2: Select Count(*)

A common problem in running queries in a benchmark is that they may return a huge number of rows.
Much of the execution time of a query could be the returning of rows in which case the network speed
and network latency would play a large role in the perceived response time. To address this, some
analysts will wrap the business queries with “select count(*) from (... business query ...);”

The problem is that the optimizer may realize that it doesn’t need
to produce the rows in spool to answer the question: “How many Salach count disting

rows would be produced?” Consider a complex 20 table join with people in the U.S.A.)
statistical functions like RANK and complex IN lists and constraints __the answer ... hmmm ... 1?
with the purpose of finding the total revenue of the top 10
customers. If there is no “GROUP BY” clause, the optimizer will
recognize that the answer of the “SELECT COUNT(*)” will be 1, and the seemingly complex query will
complete in 0.01 seconds. Even with a “GROUP BY” clause, it may not be necessary to SUM or RANK to
say how many rows will be produced, so only the keys may be processed through spool files.

Select count(*) from (

One competitive benchmark consisted of 8 queries. When those queries ran normally, they consumed
402,813 CPU seconds and produced an average of 199,212,977 rows of output. The analyst wrapped the
queries with “select count(*) from (...)” to avoid the millions of output lines that each produced. With
the “select count()” wrapper, the 8 queries only used 15 seconds of CPU, saving 99.9963% of the
processing.

Trick #3: Prestaging Data
In one benchmark, the DBMS vendor was faced

]) Real Reported Real
with loading 23.8 TB to 227 tables. They Start Start Finish
requested that the customer break up the data 5
loading files into 10 GB chunks. A It there T T -~ - -~ — - =
oading files into 0 GB chunks. As a.resu t, there Data Preparation Time | Dat
were over 80,000 files. That vendor impressed ' Load
the customer with their data loading Time

performance, taking less that 24 hours to load
the 23.8 TB. Unfortunately, not counted was the time that was spent splitting up the files into small
enough chunks for the data load utility to deliver good performance.

Trick #4: Pre-Sorting Data

Some DBMSs record the beginning and ending values of some column in a storage unit, (such as a data
block or group of blocks), in a zone map. This enables the DMBS to prune the data blocks needed to be
processed when a query uses a constraint on the column that is the basis of the map. By presorting the
data, it is more quickly loaded into the zone map. Note: This is not an argument against using DBMS
features that improve performance. However, like Trick #3, include the sorting in the preparation time.

© 2021 Teradata Page 2 of 6 teradata

Benchmark’s Biggest Tricks and Cheats

Some DBMSs use vertical compression Order_dt Cust_no | Inv_no Prod_cd | Qty | Cost
where the only data stored is that data 2020/02/11 | 213896 5311444 | 12133 2 10.50
which is different from the prior row.

Depending on the amount of 18712 1 2.40
denormalization in the data, this can 21321 1.50
result in impressive space savings and 22101

reduced I/O when the presorted data is

scanned.

Unfortunately, this pre-sorting of data works better in the preparation of the initial data load of a
benchmark than it does in real life where transactions and dimension table changes could happen every
day, hour or even minute-by-minute. For Teradata, performance may be worse if the data is sorted by
the primary index because Teradata merges data into tables by the hash value of the primary index and
sorting may cause transient skewed performance.

Trick #5: Not Reporting Failed Queries

A benchmark may consist of hundreds or thousa
tool using temporary tables, processing 2 at a time, a
unusual to have some number of queries fail on the first

s of queries. (A Bl report may be created by the BI
use over 100 queries for a single report). It is not

execution, either because of missing database objects or RetCode | Seconds | Rows

differences in the functions or syntax supported by the

DBMIS. Qry01 N 0 21.33 45

Failing to resolve those failing queries will yield a lower Qry02 8130 01 0

total run time. Qry03 0 12.72 314

Trick #6: Not Validating Row Counts — | Qryo4 0 2.96 0
. . . \

It is not unusual when a snapshot of production data |'s Qryos 0 W\, 89

exported for the benchmark on one day and the queries

are extracted on a different day, that the exported data Total for 5? Queries: 45.76

may not have the date ranges or transaction keys that

were present when the query ran. The query may have been converted from another DBMS and an error
in the revised logic does not produce the same results as the original query. The revision may have
simplified the processing, yielding an erroneous performance advantage.

It is important to at least compare the row counts from one execution of each query with the production
execution to ensure that there are no gross errors in the conversion of the query from a different DBMS
or its relation to the time period of the data snapshot.

Trick #7: Not Loading All Data

In the exporting of data, mistakes are often made, such as Snapshot Production

exporting text fields containing unprotected delimiters or line —— as | = | 1o 15

ends. The result could be a rejection of some number of rows

due to the formatting error. On the other hand, there could be Tbl2 | 10,131 | = | Thl2 | 10,131

columns used in joins that have a lot of duplicate values that Tbl3 | 41,501 | ?? | Thi3 | 41,491
Tbl4 31,989 = Tbl4 | 31,989

© 2021 Teradata Page 3 of 6 teradata

Benchmark’s Biggest Tricks and Cheats

result in an unusual amount of processing that can be eliminated by dropping a couple of rows from a
dimension table, eliminating the processing issue.

Some tables could have been defined in the DDL, but the snapshot of data failed to include that table, or
the vendor failed to load it. Running queries against empty tables produces really fast execution time,
but is not representative of what your selected system will need to do.

It is best practice to compare the row counts between the exported snapshot and the data loaded for
the benchmark.

Trick #8: Oversizing Benchmark Platform

Vendors may attempt to win the speed contest by using a
larger platform during the contest than the customer will
likely purchase. They will argue that the smaller, less '

expensive system will have proportional speed. In fact, the / s

larger platform may be able to hold much of the data in : Query i~

memory and avoid disk I/0.

Benchmark Proposed
Best practice is to disclose the platforms being used by DBMS Production
each vendor in a contest to all vendors so they can challenge the competitor’s sizing for the benchmark.

Trick #9: Pinning Tables in Cache or Memory

Related to #8 is the practice of tuning for the benchmark tests by pinning some tables in memory. This
may not be practical in a production environment with a variety of queries and SLAs, but for the
benchmark, reducing or eliminating physical I/Os is a great way to improve the chances of winning.

You need to engage experts in the platform or review the vendor documentation to see if they support
this and then consider if using that in the benchmark represents something you are likely to do in
production.

Trick #10: Query Specific Hints

Some optimizers can accept hints to override the query plan that would be automatically

created. While this may be practical in a benchmark with 20 to 200 queries, is that

something you could sustain in a production environment with hundreds of jobs and >
thousands of ad hoc users?

Best practice is to examine the queries exactly as they’ve been run in the benchmark and
ask yourself if the things required to get good performance are sustainable in a production environment.

Trick #11: Query Specific Materializations

View materializations and aggregate join indexes are
powerful DBMS tools to improve response time. However,
there may be a tendency to resolve performance problems
on specific queries by creating a materialization or a join
index for the poorly performing query.

Tables not
This is not a suggestion that you should prevent vendors Used

from using these tools to improve workload performance,

© 2021 Teradata Page 4 of 6 teradatao

Benchmark’s Biggest Tricks and Cheats

but when they only apply to a single query, you should challenge whether that approach would be
practical in production. Best practice is to get all DDL involved in a benchmark and where
materializations or join indexes are used, analyze whether they are generally applicable or specific to one

query.

Trick #12: Running Benchmarks Unsupervised

There is some work in a benchmark that is mundane as the vendor
figures out what tables need to be created, loaded and queries
adapted. Sometimes customers insist on being “in the room” for
every step in the preparation. This is overkill.

However, it is a good practice to check in on the work as the
benchmark is being prepared. It is essential to be involved as the
benchmark is being executed to detect any shenanigans, to get
firsthand experience at how the platform performs, and to observe
any potential support requirements.

If the vendor insists on running the benchmark at their site, insist on
being present. Don’t be distracted by presentations and opportunities to be wined and dined.

Use change dates on files and objects to detect what changes were made while you weren’t observing
the work. Insist that changes to queries have the original line commented out and a comment on the
reason for the change ahead of the new line(s) of code.

Trick #13: Proposing Simplistic Benchmarks
Some vendors have been known to say, “give me
your worst 5 queries and we will prove we are faster
than your current platform.” They propose that for
two reasons:

1. Itis cheap for them to execute
2. Itis much easier to tune the DBMS

With only a handful of queries, they can intently
focus on making those queries perform well. They
may run them over and over allowing data to be
cached to improve performance.

The problem is, this is not representative of the production workload that the selected platform will
need to support. The queries selected may hit that vendor’s “sweet spot” and while they may perform
better with those queries, they may fail with the mix of queries that represent your actual workload.

Make sure you test with queries that are representative of your actual production needs.

Trick #14: Running A Benchmark with an “Industry Standard” Benchmark

Some vendors will propose running “Industry Standard Benchmarks” ... (pause for the horn fanfare, then
say the following with emphasis) .. because they are industry standard and free from any vendor bias.
... oh really? Then why are they eager to use them?

© 2021 Teradata Page 5 of 6 teradatao

Benchmark’s Biggest Tricks and Cheats

TPC-H for example, was released in April, 1999
consisting of 22 queries against 8 tables. The queries
are heavy scan oriented and tend to reference a
large amount of data. In profiling data warehouses
across industries, we find that a large percentage of 3 Mo., 5%
gueries support tactical needs of the business such:

Months Ref'ed by TPC-H Queries

14% didn't
use Orders

e asan order clerk checking on an order,

e oracredit analyst looking at the transactions
of a customer behind on payments, 82% 12

e orasales representative preparing to visit a ;’;‘\f;‘:
customer,

e orabrand manager tracking new item sales
or the impact of a new promotion.

However, in TPC-H, 82% of the queries scan 12 or more months of order data.

The typical data warehouse profile has 60-90% of 030-060, 060-120,
the queries executing in 1 second or less. Why 010-030, _023%___ O15% 120-600, 0.15%
, 0.57%
don’t vendors propose to benchmark that type of 005-010, 600-222,0.03%
workload? Could it be: D;&’{:S / \ 000,001
e Because they can’t compete with that 9.09% = 001-005
volume of tactical queries? " 005010
e Or, maybe they’ve had 20 years of 01030
. . . = 030-060
tuning experience with the Industry
= 060-120
Standard Benchmarks?
000-001, w 120-600
. . . . 88.93%
Best practice is to profile your current production ® 600-77?

workload and then select a representative workload Select Queries Run Seconds 01/17/2020
with a similar profile in terms of statement type,
run seconds or I/0, and number of tables or steps executed by the query.

Benchmark tests should be run at various concurrencies using a query driver that can execute queries in
the same ratio as your intended production so you can feel confident your selected DBMS will meet your
needs.

Closing Thoughts

You may be looking for a vendor that can partner with you to provide technology that can advance the
analytics supporting your business processes. | hope this document doesn’t motivate you to rash actions
like trying to execute the benchmark without vendor resources. They have the expertise and your DBAs
have day jobs, so you need to rely on the vendors.

My advice? Ronald Regan, 40" president of the US, was taught Russian in preparation for nuclear
disarmament talks with Russian president, Mikhail Gorbachev. He picked up a Russian proverb:
“Nosepsi, Ho nposepain” which in English (without the rhyme) is: Trust but verify.

© 2021 Teradata Page 6 of 6 teradatao

	Trick #1: Results Caching
	Trick #2: Select Count(*)
	Trick #3: Prestaging Data
	Trick #4: Pre-Sorting Data
	Trick #5: Not Reporting Failed Queries
	Trick #6: Not Validating Row Counts
	Trick #7: Not Loading All Data
	Trick #8: Oversizing Benchmark Platform
	Trick #9: Pinning Tables in Cache or Memory
	Trick #10: Query Specific Hints
	Trick #11: Query Specific Materializations
	Trick #12: Running Benchmarks Unsupervised
	Trick #13: Proposing Simplistic Benchmarks
	Trick #14: Running A Benchmark with an “Industry Standard” Benchmark
	Closing Thoughts

