
© 2021 Teradata Page 1 of 9

Benchmark Deception and How to Avoid It
By Douglas H Ebel, Benchmark Trainer and Mentor

You are probably reading this document because you want to know how to design a benchmark that

avoids the issues outlined in the document “Benchmark Deception”. That document outlined how many

benchmarks do not prove that the selected DBMS will meet a company’s production needs. This is a

guide to selecting a benchmark workload that is representative of the production requirements without

“boiling the ocean” and doing a complete conversion that is costly and delays a decision. It is a balancing

act:

The key is to success is:

1. Analyze your current production workload profile

2. Select a sample workload

3. Trim and replicate that sample workload to have a profile like production

4. Adapt queries for use in a benchmark

5. Snapshot the production data, protecting sensitive and PII data

6. Select the mechanism and model for executing the benchmark

7. Design the benchmark tests with various concurrencies and data maintenance activities to

simulate the demands that will be placed on the selected DBMS

Step 1: Understand Your Production Needs

Begin by profiling your current workload. Recognizing that no day has the same processing requirements

of every other day, it is sufficient to pick a representative day of processing for your analysis. It is best to

choose a relatively heavy processing day but not one with unusual events like recovery after a system

down.

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 2 of 9

Your analysis should break down queries by run seconds, number of tables, application, steps and

summarize the CPU and IO. Your benchmark workload should have similar ratios but be much smaller.

You should also query each minute to determine how many queries were in flight

and how many were waiting to run. Too often, it is assumed that if there are 1,000

users that it is necessary to execute 1,000 queries concurrently. That could only

happen if after the annual meeting where the executive gave an inspiring pep talk,

that everyone raced back to their desk to compose a query and press the Enter key

all at once. The reality is that with 1,000 potential users, a heavy period would see

100 users logged on. With the time to compose queries, review query results, take

phone calls, get coffee, etc., it is likely that those 100 users would have 10 queries in flight.

Step 2: Select a Sample Workload

Designate several key tables that are important to your business. Determine which sessions referenced

those tables and which other related tables those sessions would need. It is best to do this analysis by

session instead of by query since

Business Intelligence queries and

power users may create a report using

a sequence of queries with

intermediate temporary tables.

Next, collect the table sizes for all

original and referenced tables. It is

possible that a small number of

queries may reference other large

tables that will significantly expand the scope of the data to be collected for the benchmark. By

eliminating a few sessions, you may be able to dramatically reduce the data size to move to a new

platform. Note: Some tables used by the sessions may be volatile or in a work database and no longer

have space allocated. Don’t eliminate those sessions because they can be adapted with volatile tables.

Step 3: Match the Benchmark Workload to Production Profile

Repeat the profiling process you performed on the production workload with the sessions you’ve

selected so far. You will want to end up with a ratio of tactical, light, medium, and heavy queries that

approximate the ratio you had from production. You may have more queries in your sample from Step 2

than you need.

Define a set of 4 to 5 groupings of queries by run seconds or

I/O’s or number of tables used or a combination of factors

from your production workload profiling. Apply those

grouping rules to the set of sampled queries to determine

how many queries fall into each grouping. To develop the final

list of queries, you could execute a number of “insert …. Select

…. Where …. Sample n“ queries that would produce a sample

The 10:1 rule

1,000 users =

100 logged on =

10 queries in flight

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 3 of 9

set of sessions with the same ratio as you found in your sampled production day. Ideally you would end

up with 50 to 200 sessions of queries.

Now take a final look at the list of tables that will be needed to support the benchmark based on the

sessions selected. This will be input to the export step.

Step 4: Adapt Queries for Use in a Benchmark

The sessions you select may have date constants that made

sense when the queries were executed, but the data exported

may come from a time period earlier or later than when the

queries were run. Other queries may reference

“CURRENT_DATE” or “CURRENT_TIMESTAMP” which is not

meaningful if the data for the benchmark was exported a month ago. These references will need to be

replaced with date literals that are contemporary to the date of the data snapshot taken for the

benchmark.

Queries that modify tables need to be identified. There are three situations:

1. If the benchmark query set will be re-run on the production platform, and queries selected

make changes to production tables, then those tables will need to be duplicated into alias-

named databases. Ensure that the logon IDs used to run the benchmark do not have any access

to the production tables to prevent mistakes that could impact production.

2. Queries that modify static tables (production or worktables) will need procedures to reset the

modified tables to their original condition after each test. Such sessions can only run once in a

test unless provided multiple sets of input data. If DELETE or UPDATE statements are involved,

you must restore from a backup copy. If the table maintenance is only inserts, you could either

restore from a backup copy or remove the inserted rows based on some indicator or “update

date” column in the table.

3. If the queries create temporary tables in a work database, those tables should be converted to

volatile tables that are created in the script and dropped at the end. That allows the session to

run repeatedly and in parallel across multiple sessions as the concurrency is increased.

Step 5: Snapshot Data for The Benchmark and Export

The list of tables needed comes from the final list of tables from Step 3. Additionally, if any of the

sessions will need transaction data to update tables, you should collect sets of that transaction data that

were identified in Step 4.

It is critical to check with your Information Security organization before exporting the data. Failure to do

so could result in weeks or months of delay when they discover what you are doing. Prepare a plan for

dealing with Personally Identifiable Information (PII) and sensitive business data.

• If the columns are merely reported, then they can be replaced with arbitrary strings. (In one

case, I developed a list of first and last names and randomly paired them, resulting in some

Data Snapshot Date: 2/09

Query sampled: 3/03

Example Constraints

where INV_DT = current_date-1

where INV_DT = ‘2021-03-02’

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 4 of 9

interesting combinations such as “Juan O’Neal”. The same approach was used to change the

association between house number and street names)

• Columns that are used in constraints need more

thoughtful shuffling, respecting the demographics of

the column values or the relationships between

columns and across tables. For example, random

replacement of dates could result in shipments being

shipped before they were ordered.

• Columns used for joins need mapping tables so that

replacements can be made across multiple tables to

maintain referential integrity. The mapping table can be

held securely or destroyed after the data is exported.

Care must be taken in the export formatting. Too often, text fields include delimiters such as commas or

line-end characters making it appear that the input record is ended whereas the next record contains the

rest of the columns. Use of quotes or escaping characters both reduces errors and save days or weeks of

effort in performing the initial data load. (Remember if using quotes, that the text may have quotes so

those must be preceded by an escaping character or doubled, depending on your load utility’s input

rules.)

Format of exported dates and timestamps should use standard “YYYY-MM-DD” or “YYYY-MM-DD

HH:MM:SS” and avoid any suppression of leading zeros. Numbers should be formatted as they are

intended to be used, so “2.54” is better than “2.5399999999999998” for floating point numbers.

Step 6 – Select the Mechanism for Running the Benchmark

It is pretty clear that a benchmark won’t produce accurate,

repeatable results if people in a room are to press the enter key

“on the count of three”. (Does that mean pressing when they say

three or just after it?)

Some benchmarks have been run from BI tools which might be ok if the BI tool is the only workload

being considered and you are only trying to assess the performance of one new platform (e.g. current

on-premises BI server and DBMS server versus moving the DBMS to the cloud). This has some

complications if the BI server is being used for other development or production usage or if a new server

is to be used, dealing with licensing and installation effort.

If the benchmark is comparing multiple new platforms (a competitive benchmark), then you are

measuring more than the differences in your DBMS alternatives. You are also measuring the differences

in the network connections and client server overheads which could mask DBMS performance

differences.

It is best to choose a query driver that can run queries and ETL jobs in a controlled and repeatable

process. We’ve evolved TdBench through multiple implementations using different technologies over the

past 12 years with the objectives of:

• Accurate simulation of customer’s actual data warehouse production workload

In a 2019 benchmark for an

insurance company, they randomly

shuffled all dates meaning half of the

claims were paid before the incident

and sometimes before the policy

was in effect. This rendered many

queries unusable.

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 5 of 9

• Productive setup and execution

• Productive summary and detailed reporting

There are often strong advocates for using J-Meter with a suspicion that TdBench, being provided by a

database vendor is biased toward that vendor. If “accurate simulation of a customer’s actual production

workload” provides a bias toward Teradata, then … guilty as charged.

J-Meter has a nice GUI and the ability to capture the activity of a user to a server and play back that

activity in a test. In a benchmark conducted by one BI tool vendor, they recorded a user running reports

at a pace they thought was reasonable, and then played back that activity in an increasing number of

sessions of 1, 5, 10, 20, 40 and 80. With J-Meter running the BI tool, we would see bursts of nine to

twelve queries fired off at the same time for a single user with gaps of 20-30 seconds between bursts.

As concurrency was increased, all sessions would fire queries at approximately the same time causing

large fluctuations in actual concurrency.

Advanced users have been able to build JMX files (the definition of the test) outside of the GUI to do

some of the same things that TdBench does. Unfortunately, many users lack the expertise to get J-Meter

to do a truthful simulation of a production workload.

J-Meter TdBench

JMX defines list of queries to be executed by
each thread in a thread pool, but all sessions
execute all queries which does not yield a
ratio of queries that match production.

Allows simple specification of multiple query
queues and a variable number of workers per
queue to achieve a production-like query
ratio.

Without extra effort, all queries execute in
the same order across sessions. With queries
executing at the same time in each session,
CPU utilization and query production goes
down if there is any skew.

TdBench chooses the next query from the
queue for each session so concurrent
sessions won’t be executing the same query
unless there are more sessions than queries.

J-Meter supports a “fixed work” model which
as queries across multiple sessions complete,
concurrency goes down

TdBench supports both fixed work and fixed
period test model. With the fixed period
model, queries continue to be initiated for
the specified duration of the test.

For prepared queries, J-Meter submits one
transaction to prepare the query and another
to pass the parameters and repeats for each
parameter. This decreases queries per hour in
a high latency environment like the cloud.

Each TdBench session issues a prepare for a
query once and then re-uses that prepared
query for each parameter it executes. This is
similar to queries with a USING clause.

J-Meter reports test results it collects from
the client which can only answer “What
happened in terms of performance?”

TdBench not only collects results in the client
but also integrates to DBMS query logging,
adding the answer to, “Why it happened?”

TdBench 8.0 is available from Teradata downloads at no cost and supports any DBMS with a JDBC

interface. It has been used on benchmarks with Snowflake, Redshift, Greenplum, Oracle, Synapse,

Sailfish, Netezza, and Google BigQuery.

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 6 of 9

Step 7 –Select Benchmark Test Models

The basics of a query driver is that there is a queue of work to complete and one or more sessions

executing the work. There are several queue configurations:

• Single queue, single worker: This is also

known as a serial test which is designed

to understand the performance of each query. It also measures the ability of the DBMS to

execute portions of the query in parallel to leverage all computing resources available.

• Single queue, multi-session: This is the

building block of TdBench where a queue

of queries is being processed by multiple

worker sessions. As each session

completes a query, it retrieves the next query from the queue

• Multi-queue replicate: This is the basic

way J-Meter handles multi session tests.

Each session is going to execute the same

list of queries. Worst case, the developer

leaves the sequence of all queries in all queues in the same order. Queries that are skewed will

tend to skew on the same AMP across all sessions at the same time resulting in under-utilization

of the platform. This can be improved with effort to shuffle the queries in each queue. If the test

is set to repeat multiple times, each repetition pauses to let each session complete its work,

further contributing to under-utilization of the platform.

• Multi-queue, multi-session: This allows

classifying queries to match the

production profile and varying the

number of workers per queue to

achieve a workload query mix that

simulates the production requirements.

This model also helps to maintain a

constant ratio of heavy, medium and

light queries. When there is only one queue with very short and very long and multiple sessions,

eventually all of the sessions will be running the long queries. Each queue and its sessions

process independently from the others. As sessions complete their queries, they retrieve the

next available query from its queue.

There are several test models that can be used, and different ones are appropriate for different

purposes.

• Fixed Work: A good use of the fixed work

model is the serial test where you have

one queue and one session which allows

measurement of the best a DBMS can do

to fully utilize its resources through

parallel process. In some cases, this is used for multi-stream tests and the metric used is the

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 7 of 9

time to complete all queries. The problem is that concurrency is not consistent throughout the

test. Basically, you are measuring the longest running query with some competing workload at

the beginning of its execution.

• Fixed Period Submission: This

model submits queries for a time

period and then lets the queries

complete. There is consistent

concurrency throughout the test.

This is most useful for comparing the query production capacity of two or more DBMSs. The

duration of the test should be set to be long enough for there to be several executions of the

longest queries. It is possible to roughly calculate partial execution of queries based on the

percentage of the query CPU execution that occurred before the end of the fixed period divided

by its total CPU in a serial test. For productivity, extremely long queries should not be involved

in the workload testing but rather compared purely on the serial testing. It is a good idea to test

how short a test you can run and still be able to extrapolate the queries that would be executed

in an hour.

• Fixed Period Completion: This is similar to the fixed period submission, but at the end of the

specified test period, all queries that are in flight are canceled. This allows (e.g.) a test declared

to be a half hour to take pretty close to 30 minutes. Otherwise, long running queries could

cause the “half hour” test to run 60 to 90 minutes.

• Query Replay: This is most useful for

validating that a platform can support an

existing query arrival rate. If there is

adequate capacity, there will be gaps of

lower concurrency during the test. If the

platform can not keep up, it will need more and more sessions to initiate the queries “on time”

and if they aren’t available, a deficit will be calculated.

• Paced Interval Query Arrival: This is most

useful for a Proof Of Concept for a new

system where there is an assumption on

the rate of query arrival. If the platform

has adequate capacity, queries will be serviced at the intended rate.

• Paced Percentage Query Arrival: This is a new feature being added to TdBench 8.01 which

allows specification of the percentage ratio of queries between queues. This prevents one

queue (e.g. tactical) from running hundreds of thousands of queries on one platform versus an

order of magnitude less on another making overall system “Query Per Hour” metrics

meaningless.

Step 8 – Design the Benchmark Tests

For comparison between platforms, a standard query test series is:

• Serial Test (Single queue, one session)

• Workload with 5 streams

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 8 of 9

• Workload with 10 streams

• Workload with 20 streams

• Workload with 40 streams

• Workload with 80 streams.

Begin with a trial serial test and look at the percentage of CPU a single stream uses. If it averages 25%,

theoretically, you will be able to run 4 streams before the additional queries impact the query

performance. In practice, there will be some impact at 3 concurrent streams, however doubling from 5

to 10 streams will still increase the queries per hour.

On small platforms with large, heavy queries, it may be more appropriate to use a sequence of 1, 2, 4, 8,

16 concurrent streams.

By doubling the number of concurrent streams for each test, it is easy to calculate the expected doubling

of response time once you go past the point of CPU or I/O saturation. It is important to remember, once

your workload demand has consumed all of an available resource (e.g. CPU), when you double the

sessions, that scarce resource will be spread across twice the sessions and with half the resources per

session, the queries should take twice as long.

It addition to a test of concurrent queries, it is good to test some update processes as well. First test

those update processes serially, then with a moderate level of concurrency such as 10 or 20 query

sessions. Each update processes should have a profile of another user being added to the workload.

The update process should be run as a “Fixed Work” test model because repeating the update with the

same transactions is not valid. If you captured multiple batches of transactions, then the update process

can cycle through the sets of updates, but it should not process the same updates more than once. It is

possible in TdBench to schedule the update processes to start at a specified time within a fixed period

test and run as a fixed work test even though the query test will continue to cycle for the specified

period. If the update process is the focus of the testing and the queries are being used as background

workload, they can be set to run continuously and the queue processing updates can terminate all

queues when it has finished its fixed period work.

Remember to reset the target tables of the update process after each test.

 Benchmark Deception and How to Avoid It

© 2021 Teradata Page 9 of 9

Closing Thoughts

Having built my first enterprise data warehouse in 1975 with multiple subject areas supporting multiple

business functions with ad hoc queries, I know that any DBMS you choose can work if you are:

• willing to invest enough effort,

• have the right skills, and

• willing to make enough compromises.

This paper has laid out the steps to construct a benchmark that simulates the requirements of your

production system to reduce effort, compromises, and cost… or worse. Just as:

The star athlete on the football field May fail on the swim team

The DBMS that can run your 20 worst queries or the Industry Standard Benchmarks faster may not be

able to keep up with the demands of your production workload which surveys have shown make up 60-

90% of the query workload. Running a benchmark that doesn’t mimic your real production requirements

is as bad as:

• Flipping a coin,

• Drawing names from a hat, or

• Asking for a show of hands

The cost and effort of testing correctly is small compared to the investment and lost opportunity cost if

you run meaningless tests and choose incorrectly.

	Step 1: Understand Your Production Needs
	Step 2: Select a Sample Workload
	Step 3: Match the Benchmark Workload to Production Profile
	Step 4: Adapt Queries for Use in a Benchmark
	Step 5: Snapshot Data for The Benchmark and Export
	Step 6 – Select the Mechanism for Running the Benchmark
	Step 7 –Select Benchmark Test Models
	Step 8 – Design the Benchmark Tests
	Closing Thoughts

